Deleting the wiki page 'DeepSeek R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart' cannot be undone. Continue?
Today, we are thrilled to announce that DeepSeek R1 distilled Llama and Qwen designs are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now release DeepSeek AI‘s first-generation frontier design, DeepSeek-R1, in addition to the distilled versions ranging from 1.5 to 70 billion parameters to construct, experiment, and responsibly scale your generative AI concepts on AWS.
In this post, we show how to start with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow comparable actions to deploy the distilled versions of the designs as well.
Overview of DeepSeek-R1
DeepSeek-R1 is a big language model (LLM) established by DeepSeek AI that uses reinforcement discovering to enhance reasoning capabilities through a multi-stage training process from a DeepSeek-V3-Base foundation. An essential differentiating function is its support learning (RL) step, which was utilized to improve the design's responses beyond the basic pre-training and tweak procedure. By integrating RL, DeepSeek-R1 can adapt better to user feedback and goals, ultimately boosting both relevance and clarity. In addition, DeepSeek-R1 utilizes a chain-of-thought (CoT) technique, indicating it's geared up to break down complex questions and reason through them in a detailed manner. This guided thinking process permits the model to produce more precise, transparent, and detailed responses. This design combines RL-based fine-tuning with CoT abilities, aiming to create structured reactions while concentrating on interpretability and user interaction. With its comprehensive abilities DeepSeek-R1 has caught the market's attention as a versatile text-generation design that can be incorporated into different workflows such as agents, logical thinking and information interpretation tasks.
DeepSeek-R1 utilizes a Mix of Experts (MoE) architecture and is 671 billion parameters in size. The MoE architecture allows activation of 37 billion parameters, making it possible for effective reasoning by routing questions to the most relevant professional “clusters.” This technique permits the model to focus on different issue domains while maintaining general effectiveness. DeepSeek-R1 requires a minimum of 800 GB of HBM memory in FP8 format for inference. In this post, we will use an ml.p5e.48 xlarge circumstances to deploy the design. ml.p5e.48 xlarge features 8 Nvidia H200 GPUs providing 1128 GB of GPU memory.
DeepSeek-R1 distilled models bring the thinking abilities of the main R1 design to more efficient architectures based on popular open models like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation refers to a procedure of training smaller sized, more efficient designs to imitate the behavior and thinking patterns of the larger DeepSeek-R1 design, using it as an instructor model.
You can release DeepSeek-R1 model either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging model, we advise deploying this model with guardrails in place. In this blog site, we will use Amazon Bedrock Guardrails to present safeguards, avoid hazardous material, and evaluate designs against key safety requirements. At the time of composing this blog site, for DeepSeek-R1 releases on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports only the ApplyGuardrail API. You can produce numerous guardrails tailored to different usage cases and apply them to the DeepSeek-R1 model, improving user experiences and standardizing security controls across your generative AI applications.
Prerequisites
To release the DeepSeek-R1 design, you require access to an ml.p5e circumstances. To check if you have quotas for P5e, open the Service Quotas console and under AWS Services, pick Amazon SageMaker, and confirm you're utilizing ml.p5e.48 xlarge for endpoint use. Make certain that you have at least one ml.P5e.48 xlarge circumstances in the AWS Region you are deploying. To ask for a limit increase, develop a limit boost request and connect to your account group.
Because you will be releasing this model with Amazon Bedrock Guardrails, make certain you have the correct AWS Identity and Gain Access To Management (IAM) authorizations to utilize Amazon Bedrock Guardrails. For instructions, see Establish permissions to use guardrails for content filtering.
Implementing guardrails with the ApplyGuardrail API
Amazon Bedrock Guardrails permits you to present safeguards, avoid damaging content, and assess models against key safety requirements. You can implement precaution for the DeepSeek-R1 model using the Amazon Bedrock ApplyGuardrail API. This allows you to use guardrails to evaluate user inputs and design reactions deployed on Amazon Bedrock Marketplace and SageMaker JumpStart. You can produce a guardrail utilizing the Amazon Bedrock console or the API. For the example code to create the guardrail, see the GitHub repo.
The general flow includes the following steps: First, the system receives an input for the model. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent to the model for reasoning. After getting the model's output, another guardrail check is used. If the output passes this final check, it's returned as the result. However, if either the input or 89u89.com output is intervened by the guardrail, a message is returned suggesting the nature of the intervention and whether it occurred at the input or output stage. The examples showcased in the following sections demonstrate reasoning using this API.
Deploy DeepSeek-R1 in Amazon Bedrock Marketplace
Amazon Bedrock Marketplace provides you access to over 100 popular, emerging, and specialized structure models (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, total the following actions:
1. On the Amazon Bedrock console, choose Model brochure under Foundation models in the navigation pane.
At the time of composing this post, you can utilize the InvokeModel API to conjure up the model. It does not support Converse APIs and other Amazon Bedrock tooling.
2. Filter for DeepSeek as a provider and pick the DeepSeek-R1 model.
The design detail page provides vital details about the model's abilities, rates structure, and implementation guidelines. You can find detailed use guidelines, consisting of calls and code bits for combination. The model supports different text generation jobs, consisting of content creation, code generation, and question answering, using its support learning optimization and CoT thinking abilities.
The page likewise includes implementation alternatives and licensing details to assist you get going with DeepSeek-R1 in your applications.
3. To start using DeepSeek-R1, pick Deploy.
You will be prompted to set up the release details for DeepSeek-R1. The model ID will be pre-populated.
4. For Endpoint name, enter an endpoint name (between 1-50 alphanumeric characters).
5. For Number of circumstances, enter a number of circumstances (in between 1-100).
6. For Instance type, select your circumstances type. For ideal performance with DeepSeek-R1, a GPU-based instance type like ml.p5e.48 xlarge is advised.
Optionally, you can configure advanced security and facilities settings, consisting of virtual personal cloud (VPC) networking, service role approvals, and encryption settings. For a lot of use cases, the default settings will work well. However, for production deployments, you may wish to evaluate these settings to line up with your company's security and compliance requirements.
7. Choose Deploy to start utilizing the design.
When the implementation is total, you can evaluate DeepSeek-R1's capabilities straight in the Amazon Bedrock play area.
8. Choose Open in playground to access an interactive interface where you can try out different triggers and change design criteria like temperature and optimum length.
When utilizing R1 with Bedrock's InvokeModel and Playground Console, utilize DeepSeek's chat design template for optimal results. For example, material for inference.
This is an excellent method to check out the design's thinking and text generation abilities before incorporating it into your applications. The playground offers immediate feedback, helping you comprehend how the model reacts to numerous inputs and letting you tweak your prompts for ideal outcomes.
You can rapidly check the design in the play ground through the UI. However, to invoke the deployed model programmatically with any Amazon Bedrock APIs, you require to get the endpoint ARN.
Run reasoning utilizing guardrails with the released DeepSeek-R1 endpoint
The following code example shows how to perform inference using a deployed DeepSeek-R1 model through Amazon Bedrock utilizing the invoke_model and ApplyGuardrail API. You can create a guardrail utilizing the Amazon Bedrock console or the API. For the example code to develop the guardrail, see the GitHub repo. After you have developed the guardrail, use the following code to execute guardrails. The script initializes the bedrock_runtime customer, sets up inference criteria, and sends out a demand to create text based upon a user timely.
Deploy DeepSeek-R1 with SageMaker JumpStart
SageMaker JumpStart is an artificial intelligence (ML) hub with FMs, integrated algorithms, and prebuilt ML options that you can deploy with just a few clicks. With SageMaker JumpStart, you can tailor pre-trained designs to your usage case, with your data, and release them into production utilizing either the UI or SDK.
Deploying DeepSeek-R1 design through SageMaker JumpStart offers two practical methods: using the intuitive SageMaker JumpStart UI or implementing programmatically through the SageMaker Python SDK. Let's explore both methods to help you choose the technique that finest suits your needs.
Deploy DeepSeek-R1 through SageMaker JumpStart UI
Complete the following actions to deploy DeepSeek-R1 using SageMaker JumpStart:
1. On the SageMaker console, select Studio in the navigation pane.
2. First-time users will be triggered to create a domain.
3. On the SageMaker Studio console, choose JumpStart in the navigation pane.
The design internet browser displays available models, with details like the supplier name and design capabilities.
4. Look for DeepSeek-R1 to view the DeepSeek-R1 design card.
Each model card reveals key details, consisting of:
- Model name
Deleting the wiki page 'DeepSeek R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart' cannot be undone. Continue?