// ISO/IEC 14496-1:2010(E) // Annex I: Usage of ITU-T Recommendation H.264 | ISO/IEC 14496-10 AVC (p150) // // 1. Start Codes shall not be present in the stream. The field indicating the size of each following NAL unit // shall be added before NAL unit.The size of this field is defined in DecoderSpecificInfo. // 2. It is recommended encapsulating one NAL unit in one SL packet when it is delivered over lossy environment. #include "mpeg4-avc.h" #include #include #include #include #define H264_NAL_IDR 5 // Coded slice of an IDR picture #define H264_NAL_SPS 7 // Sequence parameter set #define H264_NAL_PPS 8 // Picture parameter set #define H264_NAL_AUD 9 // Access unit delimiter #define H2645_BITSTREAM_FORMAT_DETECT struct h264_annexbtomp4_handle_t { struct mpeg4_avc_t* avc; int errcode; int* update; // avc sps/pps update flags int* vcl; uint8_t* out; size_t bytes; size_t capacity; }; static const uint8_t* h264_startcode(const uint8_t *data, size_t bytes) { size_t i; for (i = 2; i + 1 < bytes; i++) { if (0x01 == data[i] && 0x00 == data[i - 1] && 0x00 == data[i - 2]) return data + i + 1; } return NULL; } /// @return >0-ok, <=0-error static inline int h264_avcc_length(const uint8_t* h264, size_t bytes, size_t avcc) { size_t i; uint32_t n; n = 0; assert(3 <= avcc && avcc <= 4); for (i = 0; i < avcc && i < bytes; i++) n = (n << 8) | h264[i]; return avcc >= bytes ? -1 : (int)n; } /// @return 1-true, 0-false static int mpeg4_h264_avcc_bitstream_valid(const uint8_t* h264, size_t bytes, size_t avcc) { size_t n; while(avcc + 1 < bytes) { n = h264_avcc_length(h264, bytes, avcc); if (n < 0 || n + avcc > bytes) return 0; // invalid h264 += n + avcc; bytes -= n + avcc; } return 0 == bytes ? 1 : 0; } /// @return 0-annexb, >0-avcc, <0-error int mpeg4_h264_bitstream_format(const uint8_t* h264, size_t bytes) { uint32_t n; if (bytes < 4) return -1; n = ((uint32_t)h264[0]) << 16 | ((uint32_t)h264[1]) << 8 | ((uint32_t)h264[2]); if (0 == n && h264[3] <= 1) { return 0; // annexb } else if(1 == n) { // try avcc & annexb return mpeg4_h264_avcc_bitstream_valid(h264, bytes, 4) ? 4 : 0; } else { // try avcc 4/3 bytes return mpeg4_h264_avcc_bitstream_valid(h264, bytes, 4) ? 4 : (mpeg4_h264_avcc_bitstream_valid(h264, bytes, 3) ? 3 : -1); } } static int mpeg4_h264_avcc_nalu(const void* h264, size_t bytes, int avcc, void (*handler)(void* param, const uint8_t* nalu, size_t bytes), void* param) { uint32_t n; const uint8_t* p, * end; p = (const uint8_t*)h264; end = (const uint8_t*)h264 + bytes; for(n = h264_avcc_length(p, (int)(end - p), avcc); p + n + avcc <= end; n = h264_avcc_length(p, (int)(end - p), avcc)) { assert(n > 0); if (n > 0) { handler(param, p + avcc, (int)n); } p += n + avcc; } return 0; } ///@param[in] h264 H.264 byte stream format data(A set of NAL units) int mpeg4_h264_annexb_nalu(const void* h264, size_t bytes, void (*handler)(void* param, const uint8_t* nalu, size_t bytes), void* param) { ptrdiff_t n; const uint8_t* p, *next, *end; #if defined(H2645_BITSTREAM_FORMAT_DETECT) int avcc; avcc = mpeg4_h264_bitstream_format(h264, bytes); if (avcc > 0) return mpeg4_h264_avcc_nalu(h264, bytes, avcc, handler, param); #endif end = (const uint8_t*)h264 + bytes; p = h264_startcode((const uint8_t*)h264, bytes); while (p) { next = h264_startcode(p, (int)(end - p)); if (next) { n = next - p - 3; } else { n = end - p; } while (n > 0 && 0 == p[n - 1]) n--; // filter tailing zero assert(n > 0); if (n > 0) { handler(param, p, (int)n); } p = next; } return 0; } uint8_t mpeg4_h264_read_ue(const uint8_t* data, size_t bytes, size_t* offset) { int bit, i; int leadingZeroBits = -1; for (bit = 0; !bit && *offset / 8 < bytes; ++leadingZeroBits) { bit = (data[*offset / 8] >> (7 - (*offset % 8))) & 0x01; ++*offset; } bit = 0; assert(leadingZeroBits < 32); for (i = 0; i < leadingZeroBits && *offset / 8 < bytes; i++) { bit = (bit << 1) | ((data[*offset / 8] >> (7 - (*offset % 8))) & 0x01); ++*offset; } return (uint8_t)((1 << leadingZeroBits) - 1 + bit); } static void mpeg4_avc_remove(struct mpeg4_avc_t* avc, uint8_t* ptr, size_t bytes, const uint8_t* end) { uint8_t i; assert(ptr >= avc->data && ptr + bytes <= end && end <= avc->data + sizeof(avc->data)); memmove(ptr, ptr + bytes, end - ptr - bytes); for (i = 0; i < avc->nb_sps; i++) { if (avc->sps[i].data > ptr) avc->sps[i].data -= bytes; } for (i = 0; i < avc->nb_pps; i++) { if (avc->pps[i].data > ptr) avc->pps[i].data -= bytes; } } static int h264_sps_copy(struct mpeg4_avc_t* avc, const uint8_t* nalu, size_t bytes) { size_t i; size_t offset; uint8_t spsid; if (bytes < 4 + 1) { assert(0); return -1; // invalid length } offset = 4 * 8; // 1-NALU + 3-profile+flags+level spsid = mpeg4_h264_read_ue(nalu, bytes, &offset); for (i = 0; i < avc->nb_sps; i++) { offset = 4 * 8; // reset offset if (spsid == mpeg4_h264_read_ue(avc->sps[i].data, avc->sps[i].bytes, &offset)) { if (bytes == avc->sps[i].bytes && 0 == memcmp(nalu, avc->sps[i].data, bytes)) return 0; // do nothing if (bytes > avc->sps[i].bytes && avc->off + (bytes - avc->sps[i].bytes) > sizeof(avc->data)) { assert(0); return -1; // too big } mpeg4_avc_remove(avc, avc->sps[i].data, avc->sps[i].bytes, avc->data + avc->off); avc->off -= avc->sps[i].bytes; avc->sps[i].data = avc->data + avc->off; avc->sps[i].bytes = (uint16_t)bytes; memcpy(avc->sps[i].data, nalu, bytes); avc->off += bytes; return 1; // set update flag } } // copy new assert(avc->nb_sps < sizeof(avc->sps) / sizeof(avc->sps[0])); if (avc->nb_sps >= sizeof(avc->sps) / sizeof(avc->sps[0]) || avc->off + bytes > sizeof(avc->data)) { assert(0); return -1; } avc->sps[avc->nb_sps].data = avc->data + avc->off; avc->sps[avc->nb_sps].bytes = (uint16_t)bytes; memcpy(avc->sps[avc->nb_sps].data, nalu, bytes); avc->off += bytes; ++avc->nb_sps; return 1; // set update flag } static int h264_pps_copy(struct mpeg4_avc_t* avc, const uint8_t* nalu, size_t bytes) { size_t i; size_t offset; uint8_t spsid; uint8_t ppsid; if (bytes < 1 + 1) { assert(0); return -1; // invalid length } offset = 1 * 8; // 1-NALU ppsid = mpeg4_h264_read_ue(nalu, bytes, &offset); spsid = mpeg4_h264_read_ue(nalu, bytes, &offset); for (i = 0; i < avc->nb_pps; i++) { offset = 1 * 8; // reset offset if (ppsid == mpeg4_h264_read_ue(avc->pps[i].data, avc->pps[i].bytes, &offset) && spsid == mpeg4_h264_read_ue(avc->pps[i].data, avc->pps[i].bytes, &offset)) { if (bytes == avc->pps[i].bytes && 0 == memcmp(nalu, avc->pps[i].data, bytes)) return 0; // do nothing if (bytes > avc->pps[i].bytes && avc->off + (bytes - avc->pps[i].bytes) > sizeof(avc->data)) { assert(0); return -1; // too big } mpeg4_avc_remove(avc, avc->pps[i].data, avc->pps[i].bytes, avc->data + avc->off); avc->off -= avc->pps[i].bytes; avc->pps[i].data = avc->data + avc->off; avc->pps[i].bytes = (uint16_t)bytes; memcpy(avc->pps[i].data, nalu, bytes); avc->off += bytes; return 1; // set update flag } } // fix openh264 sps/pps id cycle (0/0, 1/1, 2/2, ..., 31/31, 0/32, 1/33, ...) if ((unsigned int)avc->nb_pps + 1 >= sizeof(avc->pps) / sizeof(avc->pps[0]) && avc->nb_sps > 16) { // replace the oldest pps mpeg4_avc_remove(avc, avc->pps[0].data, avc->pps[0].bytes, avc->data + avc->off); avc->off -= avc->pps[0].bytes; avc->pps[0].data = avc->data + avc->off; avc->pps[0].bytes = (uint16_t)bytes; memcpy(avc->pps[0].data, nalu, bytes); avc->off += bytes; return 1; // set update flag } // copy new assert((unsigned int)avc->nb_pps + 1 < sizeof(avc->pps) / sizeof(avc->pps[0])); if ((unsigned int)avc->nb_pps + 1 >= sizeof(avc->pps) / sizeof(avc->pps[0]) || avc->off + bytes > sizeof(avc->data)) { assert(0); return -1; } avc->pps[avc->nb_pps].data = avc->data + avc->off; avc->pps[avc->nb_pps].bytes = (uint16_t)bytes; memcpy(avc->pps[avc->nb_pps].data, nalu, bytes); avc->off += bytes; ++avc->nb_pps; // fixme: uint8_t overflow return 1; // set update flag } int mpeg4_avc_update(struct mpeg4_avc_t* avc, const uint8_t* nalu, size_t bytes) { int r; switch (nalu[0] & 0x1f) { case H264_NAL_SPS: r = h264_sps_copy(avc, nalu, bytes); if (1 == r || 1 == avc->nb_sps) { // update profile/level avc->profile = nalu[1]; avc->compatibility = nalu[2]; avc->level = nalu[3]; } break; case H264_NAL_PPS: r = h264_pps_copy(avc, nalu, bytes); break; default: r = 0; } return r; } static void h264_handler(void* param, const uint8_t* nalu, size_t bytes) { int r; uint8_t nalutype; struct h264_annexbtomp4_handle_t* mp4; mp4 = (struct h264_annexbtomp4_handle_t*)param; if (bytes < 1) { assert(0); return; } nalutype = (nalu[0]) & 0x1f; #if defined(H2645_FILTER_AUD) if (H264_NAL_AUD == nalutype) return; // ignore AUD #endif r = mpeg4_avc_update(mp4->avc, nalu, bytes); if (1 == r && mp4->update) *mp4->update = 1; else if (r < 0) mp4->errcode = r; // IDR-1, B/P-2, other-0 if (mp4->vcl && 1 <= nalutype && nalutype <= H264_NAL_IDR) *mp4->vcl = nalutype == H264_NAL_IDR ? 1 : 2; if (mp4->capacity >= mp4->bytes + bytes + 4) { mp4->out[mp4->bytes + 0] = (uint8_t)((bytes >> 24) & 0xFF); mp4->out[mp4->bytes + 1] = (uint8_t)((bytes >> 16) & 0xFF); mp4->out[mp4->bytes + 2] = (uint8_t)((bytes >> 8) & 0xFF); mp4->out[mp4->bytes + 3] = (uint8_t)((bytes >> 0) & 0xFF); memmove(mp4->out + mp4->bytes + 4, nalu, bytes); mp4->bytes += bytes + 4; } else { mp4->errcode = -1; } } int h264_annexbtomp4(struct mpeg4_avc_t* avc, const void* data, size_t bytes, void* out, size_t size, int* vcl, int* update) { struct h264_annexbtomp4_handle_t h; memset(&h, 0, sizeof(h)); h.avc = avc; h.vcl = vcl; h.update = update; h.out = (uint8_t*)out; h.capacity = size; if (vcl) *vcl = 0; if (update) *update = 0; mpeg4_h264_annexb_nalu(data, bytes, h264_handler, &h); avc->nalu = 4; return 0 == h.errcode ? (int)h.bytes : 0; } /// h264_is_new_access_unit H.264 new access unit(frame) /// @return 1-new access, 0-not a new access int h264_is_new_access_unit(const uint8_t* nalu, size_t bytes) { enum { NAL_NIDR = 1, NAL_PARTITION_A = 2, NAL_IDR = 5, NAL_SEI = 6, NAL_SPS = 7, NAL_PPS = 8, NAL_AUD = 9, }; uint8_t nal_type; if(bytes < 2) return 0; nal_type = nalu[0] & 0x1f; // 7.4.1.2.3 Order of NAL units and coded pictures and association to access units if(NAL_AUD == nal_type || NAL_SPS == nal_type || NAL_PPS == nal_type || NAL_SEI == nal_type || (14 <= nal_type && nal_type <= 18)) return 1; // 7.4.1.2.4 Detection of the first VCL NAL unit of a primary coded picture if(NAL_NIDR == nal_type || NAL_PARTITION_A == nal_type || NAL_IDR == nal_type) { // Live555 H264or5VideoStreamParser::parse // The high-order bit of the byte after the "nal_unit_header" tells us whether it's // the start of a new 'access unit' (and thus the current NAL unit ends an 'access unit'): return (nalu[1] & 0x80) ? 1 : 0; // first_mb_in_slice } return 0; } #if defined(_DEBUG) || defined(DEBUG) static void mpeg4_h264_bitstream_format_test(void) { const uint8_t bs3[] = { 0x00,0x00,0x01,0x67,0x42,0xe0,0x1e,0xab,0xcd, }; const uint8_t bs4[] = { 0x00,0x00,0x00,0x01,0x67,0x42,0xe0,0x1e,0xab,0xcd, }; const uint8_t bs5[] = { 0x00,0x00,0x00,0x00,0x01,0x67,0x42,0xe0,0x1e,0xab,0xcd, }; const uint8_t avcc3[] = { 0x00,0x00,0x06,0x67,0x42,0xe0,0x1e,0xab,0xcd, }; const uint8_t avcc4[] = { 0x00,0x00,0x00,0x06,0x67,0x42,0xe0,0x1e,0xab,0xcd, }; assert(0 == mpeg4_h264_bitstream_format(bs3, sizeof(bs3))); assert(0 == mpeg4_h264_bitstream_format(bs4, sizeof(bs4))); assert(0 == mpeg4_h264_bitstream_format(bs5, sizeof(bs5))); assert(3 == mpeg4_h264_bitstream_format(avcc3, sizeof(avcc3))); assert(4 == mpeg4_h264_bitstream_format(avcc4, sizeof(avcc4))); } static void mpeg4_annexbtomp4_test2(void) { const uint8_t sps[] = { 0x00,0x00,0x00,0x01,0x67,0x42,0xe0,0x1e,0xab,0xcd, }; const uint8_t pps[] = { 0x00,0x00,0x00,0x01,0x28,0xce,0x3c,0x80 }; const uint8_t sps1[] = { 0x00,0x00,0x00,0x01,0x67,0x42,0xe0,0x1e,0x4b,0xcd, 0x01 }; const uint8_t pps1[] = { 0x00,0x00,0x00,0x01,0x28,0xce,0x3c,0x80, 0x01 }; const uint8_t sps2[] = { 0x00,0x00,0x00,0x01,0x67,0x42,0xe0,0x1e,0xab }; const uint8_t pps2[] = { 0x00,0x00,0x00,0x01,0x28,0xce,0x3c }; int vcl, update; uint8_t buffer[128]; struct mpeg4_avc_t avc; memset(&avc, 0, sizeof(avc)); h264_annexbtomp4(&avc, sps, sizeof(sps), buffer, sizeof(buffer), &vcl, &update); assert(0 == vcl && 1 == update); h264_annexbtomp4(&avc, pps, sizeof(pps), buffer, sizeof(buffer), &vcl, &update); assert(0 == vcl && 1 == update && 1 == avc.nb_sps && avc.sps[0].bytes == sizeof(sps)-4 && 0 == memcmp(avc.sps[0].data, sps+4, sizeof(sps) - 4) && 1 == avc.nb_pps && avc.pps[0].bytes == sizeof(pps) - 4 && 0 == memcmp(avc.pps[0].data, pps+4, sizeof(pps) - 4)); h264_annexbtomp4(&avc, sps1, sizeof(sps1), buffer, sizeof(buffer), &vcl, &update); assert(0 == vcl && 1 == update && 2 == avc.nb_sps && avc.sps[0].bytes == sizeof(sps) - 4 && avc.sps[1].bytes == sizeof(sps1) - 4 && 0 == memcmp(avc.sps[0].data, sps+4, sizeof(sps) - 4) && 0 == memcmp(avc.sps[1].data, sps1 + 4, sizeof(sps1) - 4) && 1 == avc.nb_pps && avc.pps[0].bytes == sizeof(pps) - 4 && 0 == memcmp(avc.pps[0].data, pps + 4, sizeof(pps) - 4)); h264_annexbtomp4(&avc, pps1, sizeof(pps1), buffer, sizeof(buffer), &vcl, &update); assert(0 == vcl && 1 == update && 2 == avc.nb_sps && avc.sps[0].bytes == sizeof(sps) - 4 && avc.sps[1].bytes == sizeof(sps1) - 4 && 0 == memcmp(avc.sps[0].data, sps + 4, sizeof(sps) - 4) && 0 == memcmp(avc.sps[1].data, sps1 + 4, sizeof(sps1) - 4) && 1 == avc.nb_pps && avc.pps[0].bytes == sizeof(pps1) - 4 && 0 == memcmp(avc.pps[0].data, pps1 + 4, sizeof(pps1) - 4)); h264_annexbtomp4(&avc, sps2, sizeof(sps2), buffer, sizeof(buffer), &vcl, &update); assert(0 == vcl && 1 == update && 2 == avc.nb_sps && avc.sps[0].bytes == sizeof(sps2) - 4 && avc.sps[1].bytes == sizeof(sps1) - 4 && 0 == memcmp(avc.sps[0].data, sps2 + 4, sizeof(sps2) - 4) && 0 == memcmp(avc.sps[1].data, sps1 + 4, sizeof(sps1) - 4) && 1 == avc.nb_pps && avc.pps[0].bytes == sizeof(pps1) - 4 && 0 == memcmp(avc.pps[0].data, pps1 + 4, sizeof(pps1) - 4)); h264_annexbtomp4(&avc, pps2, sizeof(pps2), buffer, sizeof(buffer), &vcl, &update); assert(0 == vcl && 1 == update && 2 == avc.nb_sps && avc.sps[0].bytes == sizeof(sps2) - 4 && avc.sps[1].bytes == sizeof(sps1) - 4 && 0 == memcmp(avc.sps[0].data, sps2 + 4, sizeof(sps2) - 4) && 0 == memcmp(avc.sps[1].data, sps1 + 4, sizeof(sps1) - 4) && 1 == avc.nb_pps && avc.pps[0].bytes == sizeof(pps2) - 4 && 0 == memcmp(avc.pps[0].data, pps2 + 4, sizeof(pps2) - 4)); } void mpeg4_annexbtomp4_test(void) { const uint8_t sps[] = { 0x67,0x42,0xe0,0x1e,0xab }; const uint8_t pps[] = { 0x28,0xce,0x3c,0x80 }; const uint8_t annexb[] = { 0x00,0x00,0x00,0x01,0x67,0x42,0xe0,0x1e,0xab, 0x00,0x00,0x00,0x01,0x28,0xce,0x3c,0x80,0x00,0x00,0x00,0x01,0x65,0x11 }; uint8_t output[256]; int vcl, update; struct mpeg4_avc_t avc; memset(&avc, 0, sizeof(avc)); assert(h264_annexbtomp4(&avc, annexb, sizeof(annexb), output, sizeof(output), &vcl, &update) > 0); assert(1 == avc.nb_sps && avc.sps[0].bytes == sizeof(sps) && 0 == memcmp(avc.sps[0].data, sps, sizeof(sps))); assert(1 == avc.nb_pps && avc.pps[0].bytes == sizeof(pps) && 0 == memcmp(avc.pps[0].data, pps, sizeof(pps))); assert(vcl == 1); mpeg4_annexbtomp4_test2(); mpeg4_h264_bitstream_format_test(); } #endif